

WATER DIVISION

Μ

MECHANICAL DIAPHRAGM METERING PUMPS

PVDF pumphead:

Combination of PVDF

pumphead, PTFE seats and

PYREX check valves provides

broad chemical compatibility. Permits standardization on single pump for multiple

liquids and applications.

Motor UNEL-MEC:

Motor UNEL-MEC standard 3 phase, 50/60Hz. Single phase and ATEX options available. **Permits standardization and quick std motor availability on site.**

Aluminum anodized casing: Improved corrosion resistance against aggressive fumes. Extends pump life and lowers life-cycle cost.

Spring return mechanism with oversized bearing. Extends pump life and lowers life-cycle cost.

Large number of pumphead locking screw (12 pcs in large models). Reliable and effective sealing during operations.

STURDIER

NEW DESIGN

ALL models comply to ATEX (2014/34/CE) Group II, Category 3 (zone 2/22).

3pcs threaded connector (**PP models**), **Metric or Inch standard:** BSP or NPT thread allows easy and simple connection to pipeline. **Reduces cost and time** of installation and maintenance.

Models with flowrate up to 50 l/h double valve standard, optional on request untill 155 l/h (Ø108mm): Increased accuracy when operating at low flow. Enhance application flexibility.

Injection molded PVDF pumphead:

Individual gearbox reducer for each pumphead: Now you can have pumpheads with different S.P.M. Enhances application flexibility.

Individual adjustment for each pumphead:

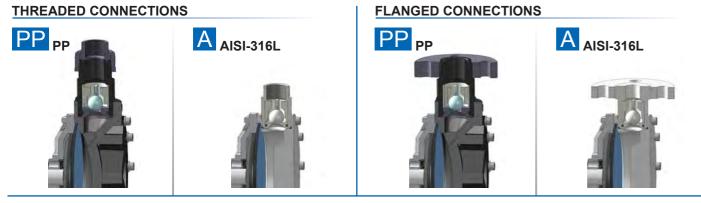
Manual adjustment standard via graduate knob or electric actuator as optional available. Enhances application flexibility.

PTFE coated cast iron diaphragm chamber (large models): Increased resistance in case of liquid spillage to reduce maintenance cost. Extends pump life and lowers life-cycle cost.

ATEX ALL models comply to ATEX (2014/34/CE) Group II, Category 3 (zone 2/22).

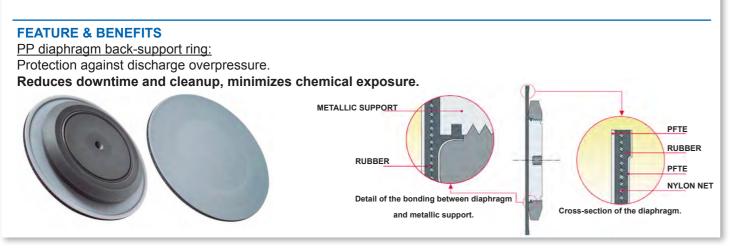
Multiple unit: All possible combination until 10 pumpheads

> Multi headed option (limit according pump size): - different materials (metallic and Non metallic) - different duty points (max flow rates and pressure) Enhances application flexibility.


NEW DESIGN

ENHANCED FLEXIBILITY

Sectional view


FEATURE & BENEFITS

Valve & Seat material options: Ceramic, Stainless Steel, Incoloy-825, Hastelloy C-276. Increased performance when handling high density and viscous as well highly abrasive and aggressive fluids while minimizing cost impact.

Extends pump life and lowers life-cycle cost.

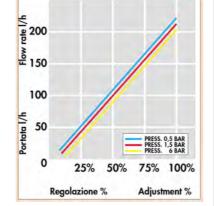
Diaphragm Structure

The mechanical diaphragm works giving the swept volume, acting basically as plunger, and as a separator between casing and pumped fluid. The OBL's unique mechanical diaphragm design allows controlled volumetric displacement and ensures linear proportionality between flow rate and percentage of stroke.

Flowrate linearity

The OBL mechanical diaphragm pump functioning reflect the same linearity of flowrate as a plunger pump.

This peculiarity is highlighted in the flow chart on the side. By the trend of the flow lines is clear the linear proportionality between flowrate and adjustment.


FEATURE & BENEFITS

Multiple layer PTFE diaphragm:

Flowrate is virtually unaffected by the working pressure variations (1% less every additional bar above 1.5 bar).

- Protection against corrosive fume entering diaphragm chamber.
- Reduced friction against back-support ring.
- Leak-free pump, due to OBL's stress-proof diaphragm.

Extends pump life and lowers life-cycle cost.

Markets & Applications

OBL pumps are designed to cover the needs of your system and other applications listed below:

 Corrosion Inhibitors (Oxygen scavengers, etc) Anti-scaling reagents. · Conductivity control (chemistry adjustment) pH control (acids and caustics).

ORP (Oxidation-Reduction Potential) Anti-fouling and biological growth control (Biocides).

Various Additive and Reactors (Chemical Reaction Process). Drum / Tote Injection, Mixing and much more.

Ore Separation: Leaching process (cyanides, sulphuric acid, solvents, etc.).

Flotation collectors (polymers, etc). Defoamers emulsifiers. Depressants and Dispersant chemicals (Iron sulfide). Dust control (Dosing of wetting chemicals).

· Corrosion Inhibitors, Anti-scaling reagents, pH control (acids and caustics).

ORP (Oxidation-Reduction Potential) Anti-fouling and biological growth control (Biocides).

Odors Control (Hydrogen peroxide, Potassium permanganate, Activated carbon).

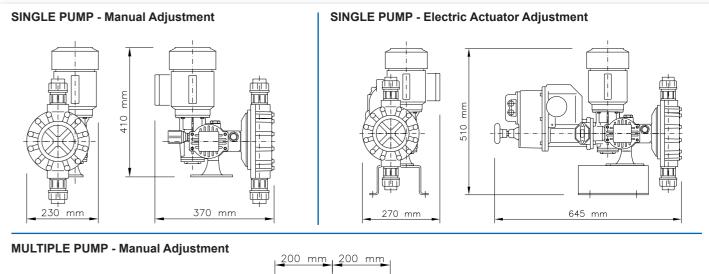
• Ph control (dosing of acids and caustics).

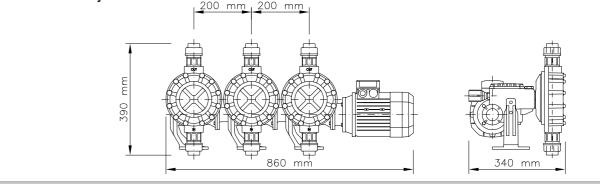
• Flotation and Clarification (Aluminium Sulfate, PAC, Ferric Chloride). · Disinfection (Chlorine, Sodium Hypochlorite).

• Whitening and Bleaching process (Hydrogen Peroxide, Hypochlorite, Chlorine).

Sizing (fillers, e.g. starch, polymers), Strengthening (Urea based chemicals, etc.), Pigmentation (dyes, pigments, etc).

• De-inking chemicals in recycling paper process (Sodium silicates, Sodium Hydroxide, Lime, Calcium Chloride, etc.).


Technical data


	50 Hz			60 Hz					CONNECTIONS								-	M 236 PP DV FA ZC		
Ø DIAPH./ STROKE	ТҮРЕ	STROKES / 1	MAX FLOW RATE I/h	TYPE	STROKES / 1	MAX FLOW RATE I/h	MAX PRESS. bar							MOTOR kW		M	PUMP TYPE			
									THREADED			FLANGED					MAX FLOWRATE I/h			
							3ph	1ph	Α	PP	S562	Α	PP	S562	3ph	1ph	PP	PUMPHEAD EXECUTION		
2 94	M 7 M 11 M 16 M 23	25	7 11 16 23	M 9 M 14 M 19 M 28 M 36 M 45	30 43 60	9 14 19 28 36 45	12 10	12	3/8" – BSP f	3/8" BSP f	1	DN 15 1/2" ANSI	DN 15 1/2" ANSI	1	0,25 - KW			A AISI-316L		
		36 50 70																PP POLIPROPILENE (PP)		
																		PP11 PP + AISI-316L VALVES & SEATS		
	M 31 M 37	95 115	31 37		84 114													PP32 PP + INCOLOY-825 VALVES & HASTELLOY C-276 SEATS		
	M 50	155	50		138											0,25 KW		\$562 PP + PTFE VALVES & PYREX SEATS		
	M 35 M 49	36 50	35 49 75 101 120	M 42 M 58 M 90 M 118	43 60 84	42 58 90	10	10		1/2" BSP f	1/2"	DN 15 1/2" ANSI	' 1/2"				DV	VALVES EXECUTION		
4 108	M 75 M 101	70												DN 15 1/2"				SV SINGLE VALVE		
	M 120	95 115			114	118					BSP f			ANSI				DV DOUBLE VALVE		
	M 155	155	155	M 145	138	145	10	10									FA	CONNECTIONS		
	M 102 M 131	36 50	100 132	M 119	43	120	8	8	3/4" BSP f	3/4"		DN 20	DN 20 3/4" ANSI	DN 20 3/4" ANSI	0,37 - KW	0,37 KW		B THREADED BSP f		
6	M 201	70	197	M 158	60	158					3/4"							N THREADED NPT f		
138	M 261	95	260	M 236	84	236	7	1		BSP f	BSP f	3/4" ANSI						F FLANGED UNI-DIN		
	M 321 M 421	115 155	320 420	M 312 M 384	114 138	312 384	6	6										FA FLANGED ANSI		
6 165	M 150	36	200 M 228 300 M 360	M 180	43		165 228 350 515	5	1" BSP f	1" BSP f		DN 25 1" ANSI	DN 25 1" ANSI	DN 25 1" ANSI			ZC	ADJUSTMENT		
	M 190	50 70		M 228	60 84	228					1"							"" GRADUATE KNOB AND VERNIER		
	M 301			WI 360	84	300					BSP f							W PNEUMATIC ACTUATOR		
	M 431 M 521	95 115	435 520	M 519	114	515		4										Z ELECTRIC ACTUATOR		

Material of construction

COMPONENTS	А	PP	PP11	PP32	S562
PUMP HEAD	AISI-316L	PP	PP	PP	PVDF
DIAPHRAGM	PTFE	PTFE	PTFE	PTFE	PTFE
VALVE GUIDE	PP	PP	PP	PP	PVDF
VALVE SEAT	AISI-316L	PVC	AISI-316L	INCOLOY-825	PTFE
VALVE (BALL)	AISI-316L	PYREX	AISI-316L	HASTELLOY C-276	PYREX
VALVE HOUSING	AISI-316L	PP	PP	PP	PVDF
VALVE SEAL	FPM	FPM	FPM	FPM	PTFE
FLANGE	AISI-316L	PVC	PVC	PVC	PVDF

Overall dimensions

Identification code

Safe area

On all pumps M, ME, R, XRN it is possible to automate the control system by installing the OBL's electric actuator Z type (ZC or ZP).

ELECTRIC ACTUATOR CHARACTERISTICS

- IP 66 standard
- 115/230V 1 50/60 Hz
- 4-20 mA feedback signal
- Manual emergency override
- Anticondensation heather (on demand)
- External automatic/manual selector (on demand)
- Flow-rate limiter (Q.max trimmer) allows to reduce the pump maximum flow-rate (corresponding to 20 mA command signal) up to 50% of the nameplate rated capacity.

The flowrate is adjusted according to following input signals:

- 4-20 mA, 0-20 mA, 20-4 mA and 0-10 V
- Pulses (0÷2 Hz 0÷30 Hz)
- RS 485 communication protocol
- Profibus DP-V0

OBL DESIGN

Hazardous Area: ATEX version

On request the pumps M, R, XRN can be made comply with the requirements of the ATEX European Directive. Even the control system can be comply with that Directive, by installing the ATEX electric actuator Z type (ZR or ZG).

ELECTRIC ACTUATOR CHARACTERISTICS

- ATEX II 2GD EEx-d IIB T4 IP6X
- 115/230V 1 50/60 Hz
- Manual emergency override
- Anticondensation heater (on demand)
- 4-20 mA pilot signal

OBL

- 4-20 mA feedback signal

oblblackline.com

